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1 Introduction

In standard auctions, the highest bid wins. English auctions and first- and second-price

sealed-bid auctions are prime examples. Recently, new forms of auctions based on the opposite

principle became popular in different areas. In "reverse auctions" or "backward auctions", as

they are sometimes called, the lowest bid wins. Without further restrictions this rule would sim-

ply induce all bidders to bunch on the lowest price. The additional rule that only an unmatched

(single) bid can win, however, forces participants to predict the bids of other participants. It

is this prediction problem, which makes the Least-Unmatched Price Auction (LUPA1) worth

studying from a strategic point of view.

According to a report in USA Today (25th of October 2006), prizes worth $360,000 were

won by bids totalling less than $1,000 in the first 250 LUPAs run in the USA . The UK-based

company Auction Air Ltd. organized more than 500 LUPAs. Since fall 2004, it allocated prizes

totalling more than $700,000 to winning bids worth about $12,000. Least Unmatched Price

Auctions may appear an odd trading mechanism. Indeed, they are often used as a marketing

instrument for TV- and radio shows. In fall 2005, when fuel prices sky-rocketed, the German

radio station Radio Brocken sold petrol vouchers worth €500 in a daily LUPA. Also in 2004, the

London radio station Capital FM Radio sold a flat in London, a house in Spain, and a Bentley

Continental in several LUPAs. Several other LUPAs were run on German radio and television

in 2005-06.

In recent years, game shows on radio and television have become a fascinating area of

economic research. The data of some shows has been used for the analysis of the participants’

behavior. Already in 1993, G������ (1993) analyzed a game show called "Card Sharks".

More recently, H�����, L���� ��� W���� (2005) and P��� ��. � (2006) studied such

popular TV shows as "Who Wants to be a Millionaire?" and "Deal or No Deal?". Data from

these shows allow these authors to investigate whether participants’ behavior was consistent

with the economic notion of rationality and the degree of risk-aversion. Analyzing the show

"The Price Is Right", B��� �� �. (1996) conclude that behavior of contestants is not fully

rational, whilst T������ ��� C���� (2002) come to the opposite conclusion that contestants

are quite capable of making optimal decisions even in difficult situations.

In the game show "Jeopardy!", players choose the category and difficulty of questions in

1 One can also read this acronym as "lowest unique price auction".
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order to maximize their own chances for giving the right answer while making it more difficult

for their rivals. With data from this show M����!� (1995) and B��� ��� S#�$��� (2006)

can highlight behavioral aspects of decision-making. A�����&�!�, A�!����!���, W��#

(2005) study "The Weakest Link", a game show in which players gain money for a coalition

by answering questions and secure these gains for themselves by voting to exclude other players

from the coalition, in order to address the issues of gender discrimination. While chance plays

an important role in all the games mentioned so far, B��!#-D�)���!# �� �. (2002) study

beauty contests, organized through newspapers, which are purely strategic games.

Game shows provide natural experiments for studying the behavior of large numbers of

participants. Moreover, they often involve high gains and, thus, offer stronger incentives. Similar

to internet auctions such as Ebay and Amazon, which were studied by O!���+�� ��� R��#

(2002, 2006) and others, radio and TV shows are also field experiments (L-!���.-R����

1999). Thus, they meet two major points of critique advanced against laboratory experiments:

small prizes and small numbers of participants. B��!#-D�)���!# �� �. (2002) compare

beauty contest experiments conducted in laboratory settings with those run in newspapers.

Their studies suggest that some behavioral patterns observed in laboratory experiments with

small numbers of participants may disappear in field experiments with larger pools of players.

On the other hand, T������ ��� C���� (2002) can replicate the results obtained in a field

experiment on TV in a laboratory experiment. They show that the behavior of people in natural

experiments with large stakes may not differ significantly from behavior observed in laboratory

experiments with much smaller monetary stakes.

LUPAs are a special case of unmatched bid auctions which have been studied also by

other authors. D� W�!#��� ��� N��)�� (2006) run laboratory experiments with "minbid

auctions". They consider the case where players are restricted to only one bid and compare the

results from their laboratory experiment with a Monte Carlo simulation. R�$$�$��� �� �.

(2007) consider high and low "unique bid auctions" where bidders are also restricted to a single

bid. They provide a numerical approximation of the solution for a game-theoretic model and

compare it with the results of a laboratory experiment. Ö����., �� �. (2007) run a "lowest

unique positive integer" experiment and contrast the observed behavior with the solution of a

Poisson game with a single bid per player.

The LUPAs which we study in this paper are field experiments with mostly large prizes

involving large numbers of participants (sometimes tens and hundreds of thousands). In some

cases we have a relatively small number of participants (one or two hundreds players ), in
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others there is a five hundred times larger number of participants. Prizes in these LUPAs

vary from $200 to $500,000. These LUPAs have been run under a variety of conditions and in

several countries, providing us with an opportunity to verify the robustness of our theoretical

predictions. Moreover, for some of these LUPAs we have obtained a detailed data at the micro-

level2. To the best of our knowledge, there are no other examples of experiments with such

large numbers of participants and such large stakes.

In this paper, we model LUPAs as non-cooperative games where, as in the field experi-

ments, players can place multiple bids. We show that large LUPAs have no equilibrium in pure

strategies. We use the data from several LUPAs to characterize the symmetric equilibrium in

mixed strategies. For the LUPAs with a large number of players, we find that aggregate bid-

ding is well described by a symmetric Nash equilibrium in mixed strategies. Individual bidders,

however, almost never follow the equilibrium strategy. Consistent with the theoretical result,

people tend to place lower bids more frequently than higher bids. Yet the actual frequency of

low bids is higher than theoretically predicted. We also find that the actual number of active

participants in LUPAs is much higher than predicted by the game-theoretic model.

In Section 2 we describe the game. The Nash equilibrium is discussed in Section 3 and,

in Section 4, we present the data from several least unmatched price auctions with varying

number of players, prizes and bidding costs. We conclude with a discussion of our results and

some comments about further research.

2 Least unmatched price auctions

The rules of a least unmatched price auction are as follows. The organizer of the game

announces the item to be sold, and the period within which bidding may take place (bidding

phase). Bids must be submitted in local currency, say in euros and cents. Bids in non-integer

amounts of euros and cents are not accepted. Agents who wish to take part in the game, place

their bids via a phone call or an SMS. The number of bids which an agent can submit is not

restricted. For each bid a fixed cost is charged, which is included in the cost of calling or sending

an SMS. No information about bids is provided during the bidding phase of the game.

As soon as the bidding phase is over, the winner is determined from the set of valid bids

submitted. The winning bid must satisfy two criteria:

2 In these cases, we gratefully acknowledge the support of Legion Telekommunkation GmbH and
Radio Regenbogen.
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1. It must be unmatched, i.e. there is no other player who has placed the same bid.

2. It must be the lowest bid among all unmatched bids.

The winner is the player, who made the winning bid. The winner pays the winning bid

to the auctioneer and receives the prize.

Table 1 summarizes some information about LUPAs, which took place in Germany in 2005-

2006. They had different formats and were run on radio, TV and in newspapers. Participants

could bid through different channels: SMS, phone call, internet, or voucher. In all auctions,

providers charged bidders with 0,49 cents per bid. The auctions had fixed duration and a

variable number of bidders, both shown in the table. There was no restriction on the number

of bids per bidder.

Media Prize Cost
Number

of bidders

Total

Bids
Duration

Winning

bid

Radio
10000€
monetary

0,49€ 9400 47872 19 days 14,55€

Radio
10000€
monetary

0,49€ 10660 52847 8 days 14,65€

Radio
1000€

monetary
0,49€ 537 1798 2 days 0,60€

Radio
3000€

monetary
0,49€ 916 6732 4 days 5,82€

Radio
5000€

monetary
0,49€ 631 6201 5 days 11,16€

Newspaper
1099€

mountain bike
0,49€ 437 1272 17 days 1,51€

TV
20 000€
tuned car

0,49€ 89862 266824 7 days 20,65€

Radio
350 000€
House

0,49€ 72588 610104 23 days 99,82€

Table 1. Summary of some LUPAs run in Germany in 2005-2006

Table 2 summarizes data from some recent LUPAs organized by AuctionAirTM . All auc-

tions were run online: costs were charged to the participant’s credit card after online registration.

In all auctions a maximal number of bidders was specified (see "Bids required" in the table).

Once this number was reached, the auction was closed. Therefore, the duration of the auction

was unknown for participants, though they were informed about the number of bidders. Auc-

tions were repeated: the same item was auctioned off several times under the same conditions.

We indicate the number of preceding auctions in the table. Data from preceding auctions was

available to bidders. The table provides also the winning bids of the last auction. Bidders were

restricted in the number of bids they could place (see "Max bids per pers."). This constraint
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was, however, mostly not binding. Identification of a player was made by the credit card num-

ber. Hence, using several cards or building up coalitions of bidders (e.g. family members), the

number of bids per person was effectively unrestricted.

Prize Cost
Bids

required

Max bids

per pers.

Preceding

auctions
Winner

£259
80 GB iPod

£3.00 120 10 6 £24.00

£1,695
40" LCD TV

£4.00 575 20 28 £6.00

£5,900
7 nights in Mauritius

£12.00 530 20 2 £49.00

£275
Headphones

£5.00 60 5 39 £12.00

£16,900
Mini Cooper

£25.00 945 20 11 £20.00

Table 2. Summary of some recent LUPAs run by AuctionAir.com

2.1 Formal description

Let us denote by I = {1, .., N} the set of potential bidders. We will assume that bids are

denominated in cents, i.e., a bid of $12.34 corresponds to the number 1234, etc. Hence, we

can identify the set of bids with the set of natural numbers N. During the bidding phase, each

player i can place an arbitrary number of bids bi ∈ N. There exists a bidding cost of c cents per
bid. If player i wins, he obtains the prize. We denote the value of the prize by A. Though a

participant could make bids sequentially, we can treat his strategy si as the simultaneous choice

of a set of bids si =
{
b1i , b

2
i , ..
}
, provided that no information about other participants’ behavior

is released during the bidding phase. Let s0 = {∅} denote the outside option of not bidding at

all. The following result follows from the fact that the best possible outcome for player i is to

win A with a single bid bi, at cost c.

Proposition 2.1 Any strategy si containing bid bi > A − c is strictly dominated by strategy
s0.

Without loss of generality, this result allows us to restrict the set of bids to an interval

of natural numbers b = 1..b, with b = A − c. Any pure strategy can be represented by a

binary vector, e.g. (1,0,0,1,0..,0) with "1" at position b meaning that the player places bid b,

and "0" meaning that bid b is not placed according to this strategy. Since bids b are ordered

as natural numbers, the representation of each pure strategy is unique. Each pure strategy st

may be assigned number ν
(
st
)
= t such that the reverse binary representation of this number
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corresponds to the unique combination of zeros and ones in that strategy. Pure strategy s0

corresponds to the option of not entering the game. Pure strategy s1 has the form (1,0,0..0)

and corresponds to only placing bid b = 1. Pure strategy s5 has the form (1,0,1,0..0) and

corresponds to placing two bids: b = 1 and b = 3. One can view the strategy sν = (1, 1, 1, 0..0)

as the reverse of the binary number 0..0111, which corresponds to the number 7 in the decimal

system and denote this strategy bys s7. It is easy to check that there are in total 2b pure

strategies in the strategy set of each player Si =
{
st
}2b−1
t=0

, including strategy s0. For any bid

b and any strategy si = st, we write si (b) = st (b) for the binary number associated with b in

strategy st, which equals one if this bid b is placed and or zero otherwise.

Denote with S =
∏
i∈I

Si the set of all possible strategy combinations. Given a combination

s = (s1, s2, ..sN) of pure strategies si ∈ S for all players i = 1..N , the winning bid of the LUPA

is determined.

Definition 2.1 Bid b = µ (s) is the least unmatched bid if and only if the following two
conditions are met:

1.
N∑
j=1

sj (b) = 1,

2.
N∑
j=1

sj (k) �= 1, ∀k < b.

The first condition means that bid b is unmatched, i.e., only one player places b in the

given strategy combination. The second condition means that there are no unmatched bids

k smaller than b, i.e., each bid k < b is placed either more than once or not placed at all.

The payoff of player i if strategy combination s is played, is

pi (s) =





A− µ (s)− c
b∑
k=1

si (k) if si (µ (s)) = 1

−c
b∑
k=1

si (k) otherwise
.

Or, equivalently,

pi (s) = (A− µ (s)) si (µ (s))− c

b∑

k=1

si (k) . (1)

If player i plays si = s0 then pi(s
0, s−i) = 0 for all strategy combinations of his rivals s−i. In

our notation, we use theconvention of splitting a strategy combination s into strategy si ∈ Si

played by player i and the opponents’ strategy combination, s−i ∈ S−i = S \ Si. Note that

each player can guarantee himself a payoff of zero by not participating in the game, i.e., by

choosing si = s0. This fact has been used above for the elimination of dominated strategies.
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This completes the description of the LUPAs as a game in strategic form.

2.2 Nash equilibria

A Nash equilibrium is defined as a strategy combination s∗ =
(
s∗i , s

∗
−i
)
such that for all i ∈ I,

pi
(
s∗i , s

∗
−i
)
≥ pi

(
si, s

∗
−i
)
, ∀si ∈ Si.

Our first result shows that a Nash equilibrium in pure strategies exists only if bidding costs c

are high relative to the prize A.

Proposition 2.2 1. For c > A− 1, there exists a unique Nash equilibrium in pure strategies:
(s∗1, ..., s

∗
N) with s∗i = s0 for all i ∈ I.

2. For c = A− 1, there exist (N + 1) Nash equilibria in pure strategies:

— (s∗1, ..., s
∗
N ) with s∗i = s0 for all i ∈ I and,

— for any i = 1, ...,N, (s∗1, ..., s
∗
N) with s∗i = s1 and s∗j = s0 for j �= i.

3. For c ∈
[
A
2 − 1;A− 1

)
, there are N Nash equilibria in pure strategies:

for any i = 1, ...,N, (s∗1, ..., s
∗
N) with s∗i = s1 and s∗j = s0 for j �= i.

4. For c < A
2 − 1, there exist no Nash equilibria in pure strategies.

The most interesting case is the one with low bidding cost. In all LUPAs which were

played the bidding cost c was very small compared to the prize A. Hence, condition c < A
2 −1 is

met and no equilibrium in pure strategies exists. Since the number of strategies in each player’s

strategy set Si is finite, existence of a Nash equilibrium in mixed strategies follows immediately

from Nash’s theorem (N��# 1950)

2.3 Mixed strategies and expected payoff

Consider arbitrary player i. Let πi =
{
πti
}2b−1
t=0

be his mixed strategy, with πti = πi
(
st
)
the

probability of his playing strategy st. Consider a combination π of such mixed strategies for all

players. Strategy combination s ∈ S is played with probability

π (s) =
N∏

i=1

πi (si) .

With this notation, the expected payoff of player i may be written as

Pi (πi, π−i) =
∑

s∈S
π (s) pi (s)

The expected payoff of player i may be decomposed in the following way

Pi (πi, π−i) =
∑

s∈S
π (s) (A− µ (s)) si (µ (s))− c

∑

s∈S
π (s)

b∑

k=1

si (k) . (2)

8



The second term determines the expected costs of player i, and the first one his expected

prize.

Lemma 2.3 The expected payoff Pi (πi, π−i) of player i may be represented in a following way:

Pi (πi, π−i) =
b∑

k=1

(A− k)
∑

s∈S
π (s) si(k)ρ (s, k)ψ (s, k)− c

2b−1∑

t=0

b∑

k=1

πtis
t (, ) (3)

with ρ (s, k) =



N∑

j=1

sj (k)
∏

h�=j
(1− sh (k))


 (4)

and ψ (s, k) =
k−1∏

l=1


1−

N∑

j=1

sj (l)
∏

h�=j
(1− sh (l))


 . (5)

The Boolean functions ρ (s, k) and ψ (s, k) in representation (3) determine whether bid k

is unmatched in strategy combination s (function ρ (s, k), equation 4) and whether there are no

unmatched bids below k (function ψ (s, k), equation 5).

3 Equilibrium

D� W�!#��� ��� N��)�� (2006), R�$$�$��� �� �. (2007) and Ö����. �� �.

(2007) assume that players can only place a single bid. This is equivalent to restricting the

strategy sets of the players to S̃ =
{
s2

k
}b
k=0

⊂ S. This implies that players have no "no entry"

option, i.e., not to bid at all. With this assumption the analysis of the game becomes very

complicated and no closed-form solution has been suggested so far. In the approach suggested

in this paper, multiple bids are feasible and there is the option of not participating in the

bidding. These assumptions are not only a better description of the LUPAs as they were played

in the field experiments, but we can also show that there is a closed-form solution, at least for

a special case.

We consider only symmetric equilibria with π∗i = π∗ =
(
π0∗, π1∗, ..πt∗, ..π(2

b−1)∗
)
for all

i.

In a first step, we find an explicit solution for a LUPA in which only strategies of a special

form can be played. In a second step, we discuss the intuition behind such a reduction of the

strategy set and show that this constraint is not always binding. In a third step, we give some

numerical examples.

Proposition 3.1 Consider a LUPA with prize A, bidding cost c and N players. Let players’
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strategy sets be restricted to Ŝ =
{
s2

k−1
}b
k=0

⊂ S. Then ∃M < b :
M−1∑
m=0

c
A−(m+1) ≤ 1 and

M∑
m=0

c
A−(m+1) > 1, and

πt∗ =





N−1

√
k∑

m=0

c
A−(m+1) −

N−1

√
k−1∑
m=0

c
A−(m+1) if

t = 2k − 1,
0 ≤ k < M

1− N−1

√
M−1∑
m=0

c
A−(m+1) if t = 2M − 1

0 otherwise

(6)

is a symmetric Nash equilibrium in mixed strategies.

The restriction to the strategy set to Ŝ means that only strategies of the form s2
k−1 =

1..1︸︷︷︸
k

, 0..0


 can be played. This allows us to simplify the derivation of the probability that

player i wins with a bid b, i.e.,the probability that bid b is unmatched minus the probability

that this player wins with a lower bid. There is no chance that any other player wins with a

lower bid. This reasoning is the central argument in the proof that leads to the explicit formula

(6).

The examples below show that the class of LUPAs for which (6) is an unconstrained Nash

equilibrium, is non-empty. On the other hand, there exist LUPAs, for which condition s ∈ Ŝ

is binding. Therefore, a restrictions of the strategy set to Ŝ does not lead to a general Nash

equilibrium but represents a constrained approximation of it. The extension of the constrained

Nash equilibrium to the unconstrained case is left for future research.

Example 3.1 Consider a LUPA with two players, N = 2, a prize A = 4 and bidding costs
c = 1. This yields the following payoff matrix where only the payoffs of the row player R are
shown:

R \ C s0 s1 s2 s3 s4 s5 s6 s7

s0 0 0 0 0 0 0 0 0
s1 2 −1 2 −1 2 −1 2 −1
s2 1 −1 −1 −1 1 −1 −1 −1
s3 1 0 1 −2 1 0 1 −2
s4 0 −1 −1 −1 −1 −1 −1 −1
s5 1 −1 1 −2 1 −2 1 −2
s6 0 −2 −1 −2 0 −2 −2 −2
s7 0 −1 0 −2 0 −1 0 −3

In this example, we have restricted the set of bids to {1, 2, 3}, since bidding 4 is dominated
by strategy s0. This game has a unique symmetric equilibrium in mixed strategies π∗R = π∗C =(
1
3 ,
1
2 , 0,

1
6 , 0, 0, 0, 0

)
. Two families of asymmetric equilibria include one player playing a pure

strategy: π∗i = (0, 1, 0, 0, 0, 0, 0, 0) and the other the strategy π∗−i = (α, 0, 0, 1− α, 0, 0, 0, 0),

α ∈
[
1
3 , 1
]
, i = R,C. Notice that condition c < A

2 − 1 of proposition 2.2 is violated. The same
game with bidding cost of 0.9 generates a unique equilibrium in mixed strategies π∗R = π∗C =
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(0.3; 0.45; 0; 0.25; 0; 0; 0; 0).

Following example illustrates how the equilibrium changes, if the number of players in-

creases from two to three.

Example 3.2 Consider the same LUPA as above (with prize A = 4, and bidding cost c = 1)
but with N = 3. In this case, the symmetric equilibrium is given by the following mixed strategy:

π0 =

√
1

3
≈ 0.57735,

π1 =

√
5

6
−
√
2

6
≈ 0.33552,

π2 = 0

π3 = 1− π0 − π1 − π2 ≈ 0.087129.
Again, only the pure strategies s0, s1 and s3 are played in equilibrium. All other strategies are
played with probability zero.

Increasing the number of players further reveals a change in the equilibrium structure.

Example 3.3 Consider the same LUPA with prize A = 4, bidding cost c = 1 as above, but
increase the number of players from three to seven. The unique symmetric equilibrium in this
game is

π0 = 6π1 ≈ 0.83,

π1 = 6

√
1

2

1

76 − 66 ≈ 0.1385,

π2 =
6

√
1

3
− π0 ≈ 0.00198,

π3 = 1− π0 − π1 − π2 ≈ 0.0288,
Note that applying the solution of Proposition 3.1 would yield the following result:

π0 =
6

√
1

3
≈ 0.8327,

π1 =
6

√
5

6
− 6

√
1

3
≈ 0.97− 0.8327 = 0.1373,

π2 = 0,

π3 = 1− π0 − π1 − π2 ≈ 0.03.

3.1 Equilibrium Distribution of Bids

Given the equilibrium in mixed strategies, we can find the probabilities with which individual
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Figure 1. Probabilities of bids in three LUPAs with A=100, c=1, and number of players 5, 10,
and 30.

bids are placed:

qb =
2b−1∑

t=0

πt∗st (b) .

In a preliminary analysis, we use the structure of the equilibrium, described in Proposition

3.1 as an approximation of the "true" equilibrium. Considering strategies with numbers t =

νk = 2
k − 1. For these strategies , bid b is only placed in strategies with numbers νk ≥ 2b − 1.

Hence, bid b = 1 is placed in all strategies, which are played in equilibrium with positive

probabilities, except strategy s0.

The probability of bid b = 1 being placed in equilibrium is

q1 = 1− π0 = 1− N−1

√
c

A− 1 . (7)

Note that example 3.3 yields the same probability for the bid b = 1 both for the precise

and the approximated version of equilibrium.

Similarly, bid b = 2 is placed with probability

q2 = 1−
(
π0 + π1

)
= 1− N−1

√
c

A− 1 +
c

A− 2 . (8)

According to example 3.3, the probability of bid 2 being placed is q2 = π2+π3 ≈ 0.03078.
The approximation through the formula above leads to q2 = 1− 6

√
5
6 ≈ 0.02993.

In general, a bid b is placed with probability

qb = 1−
b−1∑

k=0

πνk = max


1− N−1

√√√√
b−1∑

k=0

c

A− (k + 1); 0


 .

Figure 1 shows the shape of the probabilities of bids for varying number of participants

in a LUPA with A = 100 and c = 1.

4 Data and Comparison
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4.1 Data description

The data for seven German LUPAs was provided by Legion Telekommunikation GmbH. Data

for other LUPAs is available online from AuctionAir Ltd ..

For the German auctions, the following data about each bid are known (see Table 3):

Bidder ID Channel Time Bid

∼Tel.Nr.
SMS
TEL
WWW

DD.MM-HH.MM.SS. €€€€.cc

Table 3. Registered Data

Bidders are identified by their telephone numbers. It is possible that one bidder uses sev-

eral telephone numbers or that several bidders form a coalition and bid from different telephone

numbers. In first case, the data would treat one player as two distinct bidders. In the second

case, the data would identify one coalition as several distinct bidders. B��!#-D�)���!# ��

�. (2002) also note that in field experiments conducted via mass media coalition formation

cannot be excluded. In some cases, one may suspect that coalitions were formed in a LUPA3,

but they seem to be extremely rare.

The bidding channel identifies how a bid was placed. Different LUPAs offer different

possibilities for placing a bid. Most auctions we analyze here were based on SMS or telephone

bidding. In some cases online bidding was also an option (then a registration was required to

enable billing through a telephone company). LUPAs organized by AuctionAirTM offered only

online bidding with credit card payment. In this case, bidders are identified by invoice numbers.

One could place several bids with one invoice. If a bidder places bids through several invoices,

however, then it is hard to identify these invoices with an individual player.

The German LUPAs provide us with exact time and date of the bids. AuctionAirTM only

provides the date of the bid.

For the analysis in this paper we only use data about the bids. This information suffices

to derive the frequency of each bid from the bids of all players. This frequency distribution

is independent on the identification of bidders, hence missing information cannot influence the

result.

3 For example, two different players are suspected to build a coalition, if bidding from two different telephone
numbers represents two complementing parts of one systemic strategy. Say, if bidder A places all bids from 1
to 1000, and bidder B places all bids from 1001 to 2000, we might suspect the two are in coalition. The winner of one
LUPA admitted in an interview after the game that she played in a coalition with a friend.
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4.2 Number of Bidders versus Number of Players

In order to evaluate bidding behavior in the LUPAs, we first need to estimate the number of

participants in the game. From the data we know only the number of bidders Nbid, which is

distinct from the number of players N since not to bid is a strategy. For a given number of

players N , the number of bidders should average to

Nbid =
(
1− π0

)
N =

(
1− N−1

√
c

A− 1

)
N, (9)

with the rest of players choosing strategy s0 of not participating in the bidding.

If we take the number of radio listeners as a proxy for the number of potential bidders,

we compute for a radio station with 800 000 listeners and a LUPA with a prize A = 10000€

and bidding costs c = 0, 49€ the number of 10 active bidders. The actual number of bidders,

however, was close to 10000 persons!

On the other hand, if players do not follow the equilibrium structure derived in by Propo-

sition 3.1, the representation (9) is not true. Hence, it may be more reasonable to estimate the

number of potential bidders using the frequency of the first bid,

N =
ln c
A−1

ln (1− q1)
+ 1. (10)

This approach also hugely underestimation of the number of participants. For example,

in a LUPA with the prize of A = 10000€ and bidding costs c = 0, 49€, the number of bids

b = 1 totalled 445 whereas the total number of bidders was 9400, and the total number of bids

was 47872. If each of 9400 bidders places bid b = 1 with probability q1, then the frequency of

bid b = 1 should average to 9400q1, which allows us to estimate q1 ≈ 0.04734. As a result, the

estimated number of players in the game would be N =
ln 49

106

ln(1−0.04734) + 1 ≈ 253. This estimate
of the total number of players is almost forty times below the number of bidders, and would

only approach the actual number of bidders, if bid b = 1 were placed only by 12 bidders!

This suggests that we need another proxy for the number of players. In figures 2 - 5, we

use numbers Nbid, Nbid + 50% and Nbid − 50% as possible proxies.

It is interesting to note that the LUPA in Fig. 5 followed the one shown in Fig. 4 with

the same radio station just 3 days after the end of the latter. It seems that the experience of

players, who were informed about the results of the first LUPA of the two in the series, changed

the distribution of frequencies, bringing it closer to our theoretical approximation.

4.3 Frequencies of bids

Figure 6 compares the frequencies of bids in four LUPAs with equal costs (0,49€), values of

14
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Figure 5. LUPA Antenne Düsseldorf, 631 bidders, Prize 5000€, bidding costs 0,49€, duration
5 days.

prizes ranging from 1000€ to 5000€, and numbers of bidders between 437 and 916. The figure

reveals that the frequency distribution crucially depends on the value of the prize, but there

is no significant difference in the frequencies between the LUPAs with monetary prizes and

commodity prizes of equal values. Note that in the newspaper LUPA the lower limit for bids

was set at the level of 1€, whereas in other auctions it was set on 0,01€. The auctions in Figure

6 were of different duration, but the differences in frequency distributions may not be attributed

to the duration of the auction, as the following example shows.

In figure 7, two LUPAs with identical monetary prize of 10000€ and identical costs of0,49€

are compared. These two auctions were run by different radio stations in two different regions

of Germany. The first auction ("RB" in the figure) had a bidding phase of 19 days, while

the bidding phase in the second auction ("AMV" in the figure) was only 8 days long. The

"RB"-auction took place 12 days after the end of the "AMV"-auction.

Although the bidding phase in the "AMV"-auction was shorter, it resulted in a slightly

higher number of bidders. The duration of the bidding phase itself does not seem to have a

significant influence the resulting frequencies of bids.

The same conclusion appears to hold for two LUPAs with significantly higher non-monetary

stakes, as shown in Figure 8. Both plots show bids below 100€ and corresponding absolute fre-

quencies in a range between 0 and 2000.

4.4 Strategies played in experiments

A symmetric mixed-strategy Nash equilibrium determines a probability distribution πt over the

pure strategies st. If the number of players who take part in the game is a large enough, then

the share of players choosing strategy st will be approximately equal to this probability πt.
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Figure 6. Frequencies of bids in four LUPAs with comparable prizes, costs and number of
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For the approximate equilibrium of Proposition 3.1 the equilibrium strategies which are

played with positive probabilities have the property that placing a bid k implies also placing

the lower bid k− 1. Accordingly, equilibrium bids should be systematically cover all bids up to

a certain level. If all players were to bid in this way, the frequency distribution over bids must

be a decreasing function.

Figure 9 shows the frequency distribution of bids in the interval from €10 to €20 in a

LUPA with about 10000 active participants and a the prize of €10000. The data reveals that

bidders do not seem to restrict their behavior to "systematic" bidding. For example, the share

of players, who place a bid on €11.11 is about 100 times higher then the share of players who

bid on €10.98. Similarly, the frequency of bids on €13.13 exceeds the frequency on €12.70.

Figure 10 shows the bids (horizontal axis) made by individual bidders (vertical axis) in

a LUPA with a mountain bike worth 1099€ as a prize in which 437 bidders took part. If

players would follow systemic strategies, the diagram should show solid horizontal bars. Figure

11 shows an enlargeemnt of the diagramp for bids from 1€ to 15€.; The circle on the vertical

axis indicates a bidder (with identification number 372), who placed a total of 83 bids closely

covering the interval between 1€ and 2€.

Figure 9 reveals an interesting property of the frequency curve. A close-up of the frequency

distribution reveals spikes following a regular pattern. Figure 12 shows for two LUPAs three
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Figure 12. "Close up" of the frequency curve from interval (0;20) to (1;10) and to (10;11) for
two similar LUPAs.

close-ups of the frequency curve. The shape of the curve is about the same no matter whether

it is considered at the interval from 0 to 20€, from 1€ to 10€ or from 10€ to 11€. This fractal

property of the frequency curve is difficult to explain either by the game-theoretic model or by

random bidding.

A possible explanation of the spikes and of the fractal structure may be found in het-

erogeneity of agents. Figure 13 illustrates this idea. Suppose a group of players would bid for

some reason only above 1€, then we would observe a spike at the bid 100 (cents). A possible

justification for not bidding below 1€ bids may be a conjecture that the number of rivals bidding

below 1€ is high enough to reduce the probability of winning with a bid below 100 cents to zero.

Such reasoning may lead players to "eliminate bids which are probably dominated". One might

call these players "super-rational", although this is incompatible with an equilibrium strategy.

It remains, however, unexplained why other "super rational" players would choose to take

the numbers 100, 200, 300, .. 1000 etc. as the lowest bound for their "reduced set of bids".

Even a theory of prominent numbers (A1��� 1997) would not support this set of "prominent

numbers" since they cannot be reduced to the base of 1, 2, or 5.

5 Discussion

Least unmatched price auctions provide a field experiment for testing Nash equilibria in
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Figure 13. Possible explanation for spikes in the frequency distribution: "super-rational" bid-
ders first reduce the bidding interval, e.g. by making a guess that no bid below 1€ can win.
After that they bid as though the game would only allow bids higher than 1€.

mixed strategies. We have derived an approximation to a symmetric Nash equilibrium of these

LUPAs. Our model explains the downward slope of the bid distribution observed in the data,

and its dependence on the prize and bidding cost. However, the actual curvature of the bid

distribution deviates from the one predicted by the model. Partially this may be due to the

approximation used for the derivation of the symmetric Nash equilibrium in the game-theoretic

model.As Figures 4 and 5 suggest, however, that experience leads to a curvature which is closer

to the theoretical prediction. Moreover, a comparison of different LUPAs with monetary and

non-monetary payoffs shows no significant difference in the aggregate behavior of players.

The data also reveals some other features, which may be hard to reconcile with any game-

theoretic model. For example, it seems unlikely that the fractal structure of the bid frequencies

can find an explanation in the bid distribution of a Nash equilibrium. These features require

additional research both into the unconstrained bid distribution of a symmetric mixed-strategy

Nash equilibrium and into alternative behavioral assumptions about the participants of these

auctions.

Appendix A. Proofs

Proof of Proposition 2.2

I. c > A − 1 implies that pi (s) < 0, ∀i ∈ I, ∀s1, .., si−1, si+1, ..sm ∈ S, ∀si ∈ S : si �= ∅.
Obviously, s∗1 = .. = s∗m = ∅ is a Nash Equilibrium in Pure Strategies (NEPS) with pi (s

∗) = 0,

∀i ∈ I. To prove uniqueness, assume s′ is an equilibrium combination of strategies, where

at least one player i plays si �= s0 = ∅. Then for this player pi (s
′) < 0 = pi (s

∗) where

s∗ : s∗1 = .. = s∗m = ∅. Hence, s
′ is not a NEPS.

II. c = A− 1 implies there are no strategy combinations with strictly positive payoffs: for
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any player i any strategy si with |si| > 1 leads to pi (s) < 0 for any combination of other players’

strategies s−i, and are hence dominated by the trivial strategy, therefore they cannot be NEPS.

The strategies si = {b} (consisting only of one bid, |si| = 1) lead to strictly negative payoffs,

as soon as b > 1, for any combination of other players’ strategies s−i, and are also dominated

by the trivial strategy, therefore they cannot be NEPS. The set of strategies, which can lead

to an equilibrium is therefore reduced to S = {1}⋃∅. It is easy to check that a combination

s∗ : s∗1 = .. = s∗m = ∅ is a NEPS. Any combination s∗∗ =
(
s∗∗i , s∗∗−i

)
= ({1} ,∅), ∀i ∈ I is a

NEPS since β (s∗∗) = 1 and hence pi (s
∗∗) = 0 = pi

(
∅, s∗∗−i

)
. The number of NEPS is m+ 1.

III. c < A − 1 implies there exist strategy combinations with strictly positive payoff of

one player. For example, a strategy combination s = (si, s−i) = ({1} ,∅), ∀i ∈ I leads to a

positive payoff of the player i: pi (s) = A − 1 − c > 0. Therefore the strategy combination

s∗ : s∗1 = .. = s∗m = ∅ is not a NEPS anymore (each player has incentives to deviate in favour

of a strategy with a positive payoff). The combination
(
s∗i , s

∗
−i
)
= ({1} ,∅) is a NEPS since

pi
(
s∗i , s

∗
−i
)
= pi ({1} ,∅) > 0 = pi (∅,∅), and p−i

(
s∗−i, s

∗
i

)
= p−i (∅, {1}) = 0 ≥ p−i (s−i, {1})

for any other strategy s−i ∈ S. We have equality only if a player j plays s′j = {1; 2}.
Any strategy combination s′, where at least two players play {1} and all other players

play the trivial strategy, cannot be a NEPS since the set of unmatched bids is empty and the

payoffs of the players, who play {1}, is negative, which creates incentive for them to deviate in

favour of the trivial strategy.

Any strategy combination s′′, which contains strategies different from {1} and ∅, cannot
be a NEPS since either such strategies contain a bid b ≥ 2, or their length is strictly greater

than one, which both induce negative payoff and hence create incentives to deviate in favour of

the trivial strategy.

This proves that the strategy combinations
(
s∗i , s

∗
−i
)
= ({1} ,∅) are the only NEPS. The

number of such combinations is m.

IV. c � A
2 − 1. First, note that s∗1 = .. = s∗m = ∅ is not a NEPS since each player

has incentives to deviate in favour of a strategy with positive payoff. A strategy combination

without winner cannot be a NEPS (as above).

Assume s∗ = (s∗1, ..s
∗
m) is a NEPS, and the player i wins. This implies that the strategies

played by all other players are trivial: s∗j = ∅, ∀j ∈ I : j �= i (if this would not be the case, it

would imply that some players who loose, obtain negative payoff and hence have incentive to

deviate in favour of the trivial strategy, which contradicts to the assumption that s∗ is a NEPS).

This implies that s∗i = {1}, as this is the strategy with maximum payoff (otherwise the player
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i has incentive to deviate in favour of {1}, which would contradict to the assumption that s∗

is a NEPS). This implies that if a player j �= i plays a strategy s′j = {1, 2}, he can become a

winner with the winning bid b = 2. This deviation is only profitable compared to the initial

strategy s∗j = ∅ if pj = A− 2− 2c > 0. As soon as c ≥ A
2 − 1, no player j would have incentives

to deviate from the trivial strategy, and hence a strategy combination
(
s∗i , s

∗
−i
)
= ({1} ,∅) is

a NEPS. Otherwise any player j �= i has an incentive to deviate from the strategy s∗j = ∅ in

favour of the strategy s′j = {1, 2}. This is a contradiction to the assumption that s∗ is a NEPS.

Therefore no NEPS can exist if c < A
2 − 1.

Proof of Lemma 2.3

Consider expected payoff of player i (2). With respect to expected costs, we can write:

c
∑

s∈SN
π (s)

b∑

k=1

si (k) = c
∑

s∈SN

(
N∏

i=1

πi (si)

)
b∑

k=1

si (k) =

= c
∑

s∈SN


∏

j �=i
πj (sj)


πi (si)

b∑

k=1

si (k) =

= c
∑

si∈S

∑

s−i∈SN−1

b∑

k=1

πi (si) si (k)


∏

j �=i
πj (sj)


 =

= c
∑

si∈S

b∑

k=1

πi (si) si (k)
∑

s−i∈SN−1


∏

j �=i
πj (sj)


 =

= c
∑

si∈S

b∑

k=1

πi (si) si (k)

and hence

c
∑

s∈SN
π (s)

b∑

k=1

si (k) = c

2b−1∑

t=0

b∑

k=1

πtis
t (k) (A-1)

since
∑

s−i∈SN−1

(
∏
j �=i

πj (sj)

)
does not depend on si and equals to unity, for it describes

the probability of reaching any of strategy combinations in a subgame determined by a given

strategy si of player i.

Now we have to determine the expected prize of player i:

∑

s∈SN
πs (A− µ (s)) si(µ (s)) =

∑

s∈SN
si(µ (s))

N∏

j=1

πj (sj) (A− µ (s)) = (A-2)

=
b∑

k=1

∑

s∈SN :
µ(s)=k

si(k)
N∏

j=1

πj (sj) (A− k)
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The latter may be written in a form
b∑

k=1

(A− k)
∑

s∈SN
si(k)

N∏

j=1

πj (sj)ρ (s, k)ψ (s, k)

Here ρ (s, k) and ψ (s, k) are boolean functions:

ρ (s, k) =




1 if

N∑
j=1

sj (k) = 1

0 otherwise

and

ψ (s, k) =




1 if

N∑
j=1

sj (l) �= 1,∀l < k

0 otherwise

We only need to determine functions ρ (s, k) and ψ (s, k). It is easy to see that
N∑
j=1

sj (k) =

1 if and only if
N∑
j=1

sj (k)
∏
h �=j

(1− sh (k)) = 1, therefore we can choose the latter to be ρ (s, k).

With regards to ψ (s, k), note that for any strategy combination s and for any bid l, the

above function ρ (s, l) only delivers unity if
N∑
j=1

sj (l) = 1, and is zero otherwise. The term

k−1∏
l=1

(1− ρ (s, l)) is then unity only if no l < k is placed exactly once in a given strategy combi-

nation s. Therefore, we can choose ψ (s, k) to be

ψ (s, k) =
k−1∏

l=1


1−

N∑

j=1

sj (l)
∏

h �=j
(1− sh (l))




Proof of Proposition 3.1

To prove that π∗ is an equilibrium, assume that each rival of player i plays the mixed

strategy from π∗. Starting from this point, we show that if player i also plays the same mixed

strategy, he has no incentives to deviate from it.

First, consider the probability of playing s1. Player i chooses π1i to maximize his expected

payoff Pi (πi, π−i). The marginal payoff is independent of π2i ..π
2b−1
i , due to the linearity of the

payoff function. Since other players only play sνk with positive probabilities, there is only one

strategy combination s−i played with positive probability, in which si = s1 wins A, namely

if all other players play s0. In all other strategy combinations either some other player plays

a strategy, which includes bid "1", and hence strategy si = s1 cannot win, or the strategy

combination includes strategies, which are played with zero probability, and hence the whole

strategy combination is played with zero probability. The combination of mixed strategies π∗−i

of N − 1 rivals of i implies that the only strategy combination s−i, for which ρ
((
s1, s−i

)
, 1
)
·
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ψ
((
s1, s−i

)
, 1
)
= 1, is s−i =

(
s0..s0

)
and it is played with probability

(
π0
)N−1

. The choice of

mixed strategies (6) implies

π0 = N−1

√
c

A− 1
which makes the marginal expected profit for player i equal to zero:

∂Pi (πi, π−i)

∂π1i
= (A− 1)

(
π0
)N−1 − c = 0 (A-3)

The first order condition A-3 is derived from the payoff function of player i using the

fact, that the boolean functions ψ and ρ are only unity for the strategy combination, in which

all other players play s0. Condition A-3 implies that player i is indifferent with regards to

probability π1i of playing s1. In other words, player i cannot be better off if he deviates from

playing π1i = π∗
(
s1
)
.

In a similar way, FOC for πνki is met if strategies sν0..sνk−1 are played with probabilities

given by π∗. For each bid l = 1..k in strategy sνk , we need to determine strategy combinations

s−i, for which ρ ((sνk , s−i) , l) · ψ ((sνk , s−i) , l) = 1. These are strategy combinations, in which

player i would win with bid l. All other strategy combinations enter the expected payoff function

with zero weight.

Let us denote with Sl−i the set of strategy combinations s−i of the rivals of i, in which

player i can win with any bid m = 1..l. Since all N − 1 rivals of i play mixed strategy

combination π∗−i, we can calculate the cumulative probability of all strategy combinations,

in which player i can win with any bid m = 1..l: Pr
(
Sl−i
)
=
(∑l−1

m=0 π
νm
)N−1

.4 Among

these strategy combinations we are only interested in those combinations, in which only bid

m = l wins. In terms of sets of strategy combinations, we are looking for strategy combinations

s−i ∈ Sl−i\Sl−1−i . To determine the probability of such strategy combinations, we need to subtract

from Pr
(
Sl−i
)
the probability Pr

(
Sl−1−i

)
=
(∑l−2

m=0 π
νm
)N−1

of player’s i rivals’ playing strategy

combinations, in which player i can win with some lower bid m = 1..l − 1. Therefore, for any

4 For example, if players −i play
(
s0..s0

)
, then player i wins with bid 1. In this notation sν0 = s0. If players −i

play
(
sνl , s0..s0

)
, then player i wins with bid l + 1 (of course, if this bid is in his strategy, i.e. if si (l + 1) = 1).

Whilst strategy combination
(
s0..s0

)
should be counted only once, the combination

(
sνl , s0..s0

)
should be counted

N − 1 times, since any of N − 1 players can choose to play sνk , whereas other players play s0. Hence, we need to
count for all possible ways, in whichN−1 players can choose among l distinct strategies sν0 ..sνl so that n0of players
play sν0 , n1of players play sν1 , and so on. Obviously,

∑l

h=1 nh = N − 1 (the sum of numbers
of players who play strategy sνh over all strategies is equal to the total number of players under consideration). The

number of combinations of each type is given by multinomial coefficients CN−1n0,n1..nl
=

(
N − 1
n0, n1..nl

)
= (N−1)!

n0!n1!···nl!
.

For each strategy combination, its probability is given by
∏

j �=i

πj = (π
ν0)n0 (πν1)n1 ···(πνl)nl . Using the multinomial

theorem, we can write down the sum of probabilities of all such strategy combinations as
(∑l

m=0 π
νm

)N−1
.
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bid l from given strategy sνk played by player i, we may write

∑

s−i∈S−i
π (s−i)ρ ((s

νk , s−i) , l)ψ ((s
νk , s−i) , l) =

(
l−1∑

m=0

πνm

)N−1
−
(
l−2∑

m=0

πνm

)N−1

The discussion above guarantees that the right-hand side counts for those strategy combi-

nations, in which ρ ((si, s−i) , l)ψ ((si, s−i) , l) = 1. We do not need to count for the rest of them,

since ρ ((si, s−i) , l)ψ ((si, s−i) , l) is a boolean function and it equals zero if not equal unity.

The marginal expected payoff of player i from playing strategy sνk with probability πνki

is hence given by

∂Pi (πi, π−i)

∂πνki
=

k∑

l=1

(A− l)



(
l−1∑

m=0

πνm

)N−1
−
(
l−2∑

m=0

πνm

)N−1
− kc (A-4)

Substituting for πνm from π∗−i yields

∂Pi (πi, π−i)

∂πνki
= 0

Again, player i is indifferent with regards to πνki , and deviating from πνki = π∗ (sνk) does

not make player i better off.

Choosing πνki iteratively, player i approaches strategy sνM such that setting πνMi in ac-

cordance with the formula for πνki would lead to
M∑
m=0

πνmi > 1. The first order condition A-4

for πνMi is met by the choice of π∗−i for strategies sν0 ..sνM−1, hence if player i plays πνMi with

smaller probability, which makes
M∑
m=0

πνmi = 1, he is still in his optimum.

Solution to Example 3.1

Consider players i and j playing a two-players LUPA with the prize of 4 and marginal

costs of 1. Obviously, strategies with bids b > 3 are strictly dominated by the non-entrance

strategy. Expected payoff function is in this case

Pi (πi, π−i) = 3
∑

s∈SN
πi (si) si(1)πj (sj) ρ (s, k)ψ (s, k) +

2
∑

s∈SN
πi (si) si(2)πj (sj) ρ (s, k)ψ (s, k) +

∑

s∈SN
πi (si) si(3)πj (sj) ρ (s, k)ψ (s, k)− c

7∑

t=0

3∑

k=1

πtis
t (k)

The strategy set of each player consists of eight strategies s0..s7, following the notation from

the beginning of the paper. There are in total 82 = 64 strategy combinations.

The first summation operator only includes those strategy combinations, in which player
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i places bid 1, otherwise si(1) = 0. These are all strategy combinations within which player i

plays strategies s1 = (1, 0, 0) , s3 = (1, 1, 0), s5 = (1, 0, 1) , s7 = (1, 1, 1). The boolean function

ρ (s, 1) = si (1) (1− sj (1)) + sj (1) (1− si (1)) = 1 − sj (1) only delivers unity if player j plays

strategies with even numbers: s0 = (0, 0, 0) , s2 = (0, 1, 0), s4 = (0, 0, 1) , s6 = (0, 1, 1). The

boolean function ψ (s, 1) delivers unity, since there are no bids below b = 1. The first summation

operator transforms into

3
3∑

t=0

π2t+1i

3∑

u=0

π2uj

The second summation operator only includes strategy combinations, in which player i

places bid b = 2, i.e. those with player’s i strategies s2 = (0, 1, 0), s3 = (1, 1, 0), s6 = (0, 1, 1) ,

s7 = (1, 1, 1). The boolean function ρ (s, 2) = 1− sj (2) only delivers unity for following strate-

gies played by player j: s0 = (0, 0, 0) , s1 = (1, 0, 0), s4 = (0, 0, 1) , s5 = (1, 0, 1). The boolean

function ψ (s, 2) = 1−si (1) (1− sj (1))−sj (1) (1− si (1)) only delivers unity for strategy combi-

nations
(
s2, s0

)
,
(
s2, s4

)
,
(
s3, s1

)
,
(
s3, s5

)
,
(
s6, s0

)
,
(
s6, s4

)
,
(
s7, s1

)
,
(
s7, s5

)
from those defined

above. Therefore, the second summation operator transforms into

2
((
π2i + π6i

) (
π0j + π4j

)
+
(
π3i + π7i

) (
π1j + π5j

))
=

= 2
1∑

t=0

(
π2+ti + π6+ti

)(
πtj + π4+tj

)

The third summation operator only includes strategy combinations, consisting of s4 =

(0, 0, 1), s5 = (1, 0, 1), s6 = (0, 1, 1), s7 = (1, 1, 1) for player i, and of s0 = (0, 0, 0), s1 = (1, 0, 0),

s2 = (0, 1, 0), s3 = (1, 1, 0) for player j. Among these strategy combinations, function

ψ (s, 3) = (1− si (1) (1− sj (1))− sj (1) (1− si (1)))×

(1− si (2) (1− sj (2))− sj (2) (1− si (2)))

only delivers unity for
(
s4, s0

)
,
(
s5, s1

)
,
(
s6, s2

)
,
(
s7, s3

)
. Therefore, the third summa transforms

into
3∑

t=0

πt+4i πtj

The cost term for player i takes the form

π1i + π2i + π4i + 2
(
π3i + π5i + π6i

)
+ 3π7i

Summarizing, the expected payoff function for player i may be written as

Pi (πi, πj) = 3
3∑

t=0

π2t+1i

3∑

u=0

π2uj + 2
1∑

t=0

(
π2+ti + π6+ti

) (
πtj + π4+tj

)
+

3∑

t=0

πt+4i πtj −
(
π1i + π2i + π4i + 2

(
π3i + π5i + π6i

)
+ 3π7i

)
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Rearranging leads to the following payoff matrix (only payoffs for player i are shown,

symmetric for j):
i \ j s0 s1 s2 s3 s4 s5 s6 s7

s0 0 0 0 0 0 0 0 0
s1 2 −1 2 −1 2 −1 2 −1
s2 1 −1 −1 −1 1 −1 −1 −1
s3 1 0 1 −2 1 0 1 −2
s4 0 −1 −1 −1 −1 −1 −1 −1
s5 1 −1 1 −2 1 −2 1 −2
s6 0 −2 −1 −2 0 −2 −2 −2
s7 0 −1 0 −2 0 −1 0 −3

To proceed with the best response function of player i, we find following derivatives of his

expected payoff function:
∂Pi
∂π0i

= 0 ∂Pi
∂π4i

= π0j − 1
∂Pi
∂π1i

= 3
3∑
u=0

π2uj − 1 ∂Pi
∂π5i

= 3
3∑
u=0

π2uj + π1j − 2
∂Pi
∂π2i

= 2
(
π0j + π4j

)
− 1 ∂Pi

∂π6i
= 2
(
π0j + π4j

)
+ π2j − 2

∂Pi
∂π3i

= 3
3∑
u=0

π2uj + 2
(
π1j + π5j

)
− 2 ∂Pi

∂π7i
= 3

3∑
u=0

π2uj + 2
(
π1j + π5j

)
+ π3j − 3

(A-5)

The probability of playing strategy s0 results from the constraint
7∑
t=0

πti = 1.

The derivatives of the payoff function exhibit following structure:

∂Pi

∂πt+4i

=
∂Pi

∂πti
+ πtj − 1, ∀t = 0..3 (A-6)

It immediately follows that in an equilibrium, in which player j plays the first four strate-

gies with πtj < 1, t = 1..4, player i plays π4i = π5i = π6i = π7i = 0. Indeed, either ∂Pi
∂πti

> 0 and

πti = 1, which implies all other probabilities to be zero, or ∂Pi
∂πti

≤ 0, which implies ∂Pi
∂πt+4i

< 0 and

hence πt+4i = 0.

If player j plays π0j = 1, then it is optimal for player i to play π1i = 1. If player j plays

π1j = 1, all derivatives in (A-5) turn negative, except ∂Pi
∂π3i

= 0. Therefore, it is still optimal

for player i to play π0i = 0. At the same time, player i is indifferent between strategies s0 and

s3, since both respective marginal payoffs are zero. Player i can choose π3i > 0, respecting the

constraint π0i + π3i = 1, but π
0
i cannot be smaller than

1
3 , since otherwise π1j = 1 is not optimal

for player j anymore. This reasoning leads to two connected continua of equilibria

NE1 πi = (0, 1, 0, 0, 0, 0, 0, 0) πj = (α, 0, 0, 1− α, 0, 0, 0, 0)
NE2 πi = (α, 0, 0, 1− α, 0, 0, 0, 0) πj = (0, 1, 0, 0, 0, 0, 0, 0)

with α ∈
[
1

3
, 1

]

There are no other equilibria with some player playing a pure strategy. For equilibria

in mixed strategies we may focus on strategies s0..s3 (due to property A-6). Substituting for
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π4j = π5j = π6j = π7j = 0 and for π0j = 1− π1j − π2j − π3j in (A-5) yields

∂Pi
∂π1i

= 2− 3π1j − 3π3j ≤ 0
∂Pi
∂π2i

= 1− 2π1j − 2π2j − 2π3j ≤ 0
∂Pi
∂π3i

= ∂Pi
∂π1i

+ 2π1j − 1 ≤ 0

The last condition requires that ∂Pi
∂π1i

≤ 1−2π1j . If π1j > 1
2 , which is only possible if

∂Pj
∂π1j

= 0,

we obtain π1i = 0, which implies ∂Pj
∂π3j

< 0, and hence π3j = 0. In this case in order to meet the

first condition, π1j should satisfy 2− 3π1j ≤ 1− 2π1j , which is equivalent to π1j ≥ 1. Since pure
strategies are not possible, the latter is a contradiction.

If π1j <
1
2 , then

∂Pi
∂π3i

< 0 and π3i = 0, therefore
∂Pj
∂π1j

= 2− 3π1i ≤ 0 implies π1i ≥ 2
3 , which is

only possible if ∂Pi
∂π1i

= 0. The latter requires 2
3 − π3j ≤ π1j < 1

2 and hence π3j > 1
6 , which needs

∂Pj
∂π3j

= ∂Pj
∂π1j

+2π1i − 1 = 0 implying
∂Pj
∂π1j

< 0, and hence π1j = 0. This implies
2
3 − π3j ≤ π1j = 0 i.e.

π3j ≥ 2
3 and in turn ∂Pi

∂π1i
< 0, which is a contradiction to π1i ≥ 2

3 .

Therefore, in equilibrium π1j =
1
2 which implies ∂Pi

∂π2i
= −2π2j − 2π3j , which is zero only if

π2j = π3j = 0. The latter implies ∂Pi
∂π1i

> 0, which is a contradiction. Therefore, ∂Pi
∂π2i

< 0 and

hence π2i = 0.

On the other hand, π1j =
1
2 implies ∂Pi

∂π3i
= ∂Pi

∂π1i
= 1

2 − 3π3j . The two cannot be nega-

tive, since this would mean an equilibrium with a pure strategy s0, which is a contradiction.

Therefore ∂Pi
∂π3i

= ∂Pi
∂π1i

= 0, which implies π3j =
1
6 . The rest is easy to calculate. Besides the

above asymmetric equilibria with pure strategies, the game has a unique equilibrium in mixed

strategies, which is symmetric:

NE3 π∗i =
(
1
3 ,
1
2 , 0,

1
6 , 0, 0, 0, 0

)
π∗j =

(
1
3 ,
1
2 , 0,

1
6 , 0, 0, 0, 0

)
(A-7)

In this symmetric equilibrium, bid b = 1 is placed by each player with probability 1
2+

1
6 =

2
3 , bid b = 2 is placed with probability 1

6 , no other bids are placed.

Both players face an expected payoff of zero

End of solution

Solution to Example 3.2

Let three players i, j and y play LUPA with the prize of 4, and bidding costs of 1. Again,

consider only bids up to b = 3. Each player may randomize over 8 strategies. Set SN consists of

512 strategy combinations s. Some asymmetric equilibria can be found by noticing that if one

of the players doesn’t enter the game, other players play the game from the previous example

with respective equilibria, in which one of the players plays strategy s1 with certainty. The

third player has no incentives to enter the game.
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>From now on we focus on symmetric equilibria in mixed strategies. The marginal ex-

pected payoffs of strategies are:
∂Pi
∂π0i

= 0
∂Pi
∂π1i

= 3
(
π0 + π2 + π4 + π6

)2 − 1
∂Pi
∂π2i

= 2
((

π1 + π5
)2
+
(
π0 + π4

)2)− 1
∂Pi
∂π3i

= ∂Pi
∂π1i

+ 2
((

π1 + π5
)2
+ 2
(
π0 + π4

) (
π1 + π5

))
− 1

∂Pi
∂π4i

=
(
π0
)2
+
(
π1
)2
+
(
π2
)2
+
(
π3
)2 − 1

∂Pi
∂π5i

= ∂Pi
∂π1i

+
((

π0 + π1
)2 −

(
π0
)2
+
(
π2 + π3

)2 −
(
π2
)2)− 1

∂Pi
∂π6i

= ∂Pi
∂π2i

+
((

π0 + π2
)2 −

(
π2
)2
+
(
π1 + π3

)2 −
(
π1
)2)− 1

∂Pi
∂π7i

= ∂Pi
∂π3i

+
(
2π0π3 + 2π1π2 + 2π1π3 + 2π2π3 +

(
π3
)2)− 1

(A-8)

Since pure strategies are not possible in the symmetric equilibrium, ∂Pi∂πti
≤ 0, ∀t = 0..7.

First note that as soon as no strategy is played in equilibrium as a pure strategy, we

obtain πt < 1, ∀t = 0..7 and hence
(
π0
)2
+
(
π1
)2
+
(
π2
)2
+
(
π3
)2

<
(
π0 + π1 + π2 + π3

)2 ≤ 1

which implies ∂Pi
∂π4i

< 0. Therefore, π4i = 0 in equilibrium. The same reasoning applies to
((

π1
)2
+ 2π0π1 +

(
π3
)2
+ 2π2π3

)
<
(
π0 + π1 + π2 + π3

)2 ≤ 1

and ((
π0
)2
+ 2π0π2 +

(
π3
)2
+ 2π1π3

)
<
(
π0 + π1 + π2 + π3

)2 ≤ 1
and (

2π0π3 + 2π1π2 + 2π1π3 + 2π2π3 +
(
π3
)2)

<
(
π0 + π1 + π2 + π3

)2 ≤ 1
which lead to ∂Pi

∂π5i
< 0, ∂Pi

∂π6i
< 0 and ∂Pi

∂π7i
< 0 and therefore to π5i = 0, π

6
i = 0 and π7i = 0

(since ∂Pi
∂π1i

≤ 0, ∂Pi
∂π2i

≤ 0 and ∂Pi
∂π3i

≤ 0). This reduces the system of inequalities to

∂Pi
∂π1i

= 3
(
π0 + π2

)2 − 1
∂Pi
∂π2i

= 2
((

π1
)2
+
(
π0
)2)− 1

∂Pi
∂π3i

= ∂Pi
∂π1i

+ 2
((

π1
)2
+ 2π0π1

)
− 1

(A-9)

If ∂Pi
∂π1i

< 0 then π1 = 0. At the same time π3 = 0, and π0 + π2 = 1 should hold , which

makes ∂Pi
∂π1i

strictly positive, which is a contradiction.

If ∂Pi
∂π2i

< 0 then π2 = 0 and
(
π1
)2
+
(
π0
)2

< 1
2 . At the same time, ∂Pi

∂π1i
= 0 implies

π0 = 1√
3
, hence π1 < 1√

6
and therefore π3 = 1 − π0 − π1 > 1 − 1√

3
− 1√

6
> 0, which implies

2
((

π1
)2
+ 2π0π1

)
= 1. Substituting for π0 = 1√

3
yields

(
π1
)2
+ 2√

3
π1 − 1

2 = 0. This equation

has following roots: π1 = − 1√
3
±
√

5
6 = −

√
2
6 ±

√
5
6 < 0, which implies π1 =

√
5
6 −

√
2
6 .
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Checking for the sum
(
π1
)2
+
(
π0
)2

yields
(√

5
6 −
√
2
6

)2
+ 1
3 =

5
6 +

2
6 −2

√
10
36 +

1
3 =

9−2
√
10

6 < 1
2 .

Finally, we obtain π3 = 1−
√

5
6 .

If both ∂Pi
∂π2i

= 0 and ∂Pi
∂π1i

= 0 together with ∂Pi
∂π3i

< 0 then we obtain

(
π0 + π2

)2
=

1

3
(
π1
)2
+
(
π0
)2

=
1

2

π0 + π1 + π2 = 1

the first and the third equations yield π1 = 1 − 1√
3
. The second equation yields π0 =√

1+4
√
3

18 . The first equation yields a contradiction π2 = 1√
3
−
√

1+4
√
3

18 =
√

6
18 −

√
1+4

√
3

18 < 0

since 6 < 1 + 4
√
3.

Therefore, the game has a unique symmetric equilibrium

NE π∗i = π∗j = π∗y =
((

1√
3

)
;
(√

5
6 −
√

2
6

)
; 0;
(
1−
√

5
6

)
; 0; 0; 0; 0

)
(A-10)

The expected payoff of players in the symmetric equilibrium is zero

End of solution

Solution to Example 3.3

Similar reasonings as in previous example lead to the following system of inequalities,

describing the equilibrium
∂Pi
∂π1i

= 3
(
π0 + π2

)6 − 1 ≤ 0
∂Pi
∂π2i

= 2
((

π0 + π1
)6 − 6π1

(
π0
)5)− 1 ≤ 0

∂Pi
∂π3i

= ∂Pi
∂π1i

+ 2
((

π0 + π1
)6 −

(
π0
)6)− 1 ≤ 0

(A-11)

Assuming ∂Pi
∂π1i

< 0 we obtain π1 = 0, which implies π3 = 0, hence π0 + π2 = 1, which

implies ∂Pi
∂π1i

> 0, which is a contradiction. In the following, we assume ∂Pi
∂π1i

= 0.

∂Pi
∂π2i

< 0 and ∂Pi
∂π3i

= 0 imply π2 = 0, hence π0 = 6

√
1
3 , and π1 = 6

√
5
6 − 6

√
1
3 . Substituting to

∂Pi
∂π2i

yields ∂Pi
∂π2i

> 0, which is a contradiction.

∂Pi
∂π2i

= 0 and ∂Pi
∂π3i

< 0 imply π3 = 0, hence π0 + π2 = 1 − π1, which turns ∂Pi
∂π1i

= 0

into π1 = 1 − 6

√
1
3 . This makes 6π1 ≈ 1, 004 > 1. Now consider the difference ∂Pi

∂π2i
− ∂Pi

∂π3i
=

(
π0
)6 − 6π1

(
π0
)5
=
(
π0
)5 (

π0 − 6π1
)
. Either π0 = 0 and ∂Pi

∂π2i
= ∂Pi

∂π3i
, which is a contradiction,

or ∂Pi
∂π2i

< ∂Pi
∂π3i

< 0 (since π0 < 1 < 6π1), which is also a contradiction.

Therefore, in equilibrium ∂Pi
∂π1i

= ∂Pi
∂π2i

= ∂Pi
∂π3i

= 0. This can only hold if π0 = 6π1 (from

the equation ∂Pi
∂π2i

= ∂Pi
∂π3i

). Condition ∂Pi
∂π2i

= 0 delivers π1 = 6

√
1
2 · 1

76−66 , and condition ∂Pi
∂π1i

= 0

delivers π2 = 6

√
1
3 − 6 6

√
1
2 · 1

76−66 . Probability π3 is determined by the condition
3∑
k=0

πk = 1. It
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is easy to prove that all probabilities are strictly positive.

End of solution
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